

Wednesday, February 24, 2021 11:01 AM

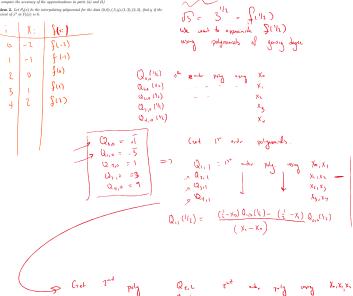
Theorem 3.5 Let f be defined at x_0, x_1, \ldots, x_k and let x_j and x_j be two distinct numbers in this set. Then $P(x) = \frac{(x - x_j)P_{0,1,...,j-1,j+1,...,k}(x) - (x - x_i)P_{0,1,...,i-1,i+1,...,k}(x)}{(x_i - x_j)}$

is the kth Lagrange polynomial that interpolates f at the k+1 points x_0,x_1,\ldots,x_d

$\begin{array}{lll} \textbf{3.2 Problems} \\ \textbf{Problem 1.} \ \textit{Use Neville's method to approximate} \sqrt{3} \ \textit{with the following functions and values} \end{array}$

Problem 1. Use Netwie's method to approximate $\sqrt{3}$ and the points a_1 . $f(x) = 3^x$ and the values $x_0 = -2$, $x_1 = -1$, $x_2 = 0$, $x_3 = 1$, $x_4 = 2$. $f(x) = \sqrt{x}$ and the values $x_0 = 0$, $x_1 = 1$, $x_2 = 2$, $x_3 = 4$, $x_4 = 5$.

3. compare the accuracy of the approximations in parts (a) and (b)



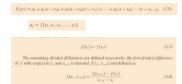
 $(\chi_{-\chi_0}) Q_{\alpha_0}(\eta_0) = (\chi_{-\chi_0}) Q_{\eta_0}(\eta_0)$ Qn(1/2) = (X2 - X6)

 Q_{3} , 1Qy, L

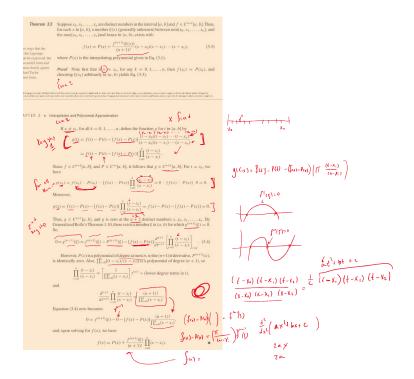
X, K, Xi

3.3 Problems

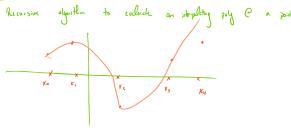
1. f(43) if



 $P_s(x) = f(x_0) + \sum_{k=1}^{s} {s \choose k} \Delta^k f(x_0)$



1 Nevilles Method



$$f$$
 P_n intepolate n all $(X-X;)\overline{P_i} - (X-X;)\overline{P_j}$

$$P_n(x) = (X-X;)\overline{P_i} - (X-X;)\overline{P_j}$$

 $X_j - X_i$